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Abstract. This paper studies the correction to the effective Hamiltonian of the Harper equation 
in respect of the total bandwidth. The effective Hamiltonian descr ik  the further splitting 
fmm the spec” of a lower-order fraction when the specmm of a high=-order fraction is 
considered. The total bandwidth for a split sub-band is given by the Thouless scaling law 
modified by the curvalue of the effective Hamiltonian at its saddle points. In this paper. it 
is shown that the leading term of the effective Hamiltonian is exactly salvable. Moreover the 
comedon to the CUN- of the effective Hamiltonian is obtained numerically, and the explicit 
analytical expression is also found. This gives the second sum rule, which is of importance in 
deriving the Thouless scaling law for a generic fraction. 

1. Introduction 

In this paper, I consider the spectrum of the rational Harper equation [l] 

e-’!cn-l + 2cosQn@n + k& + eikLc,+l = Ec, (1.1) 

where p = p / q  is a rational number, and q and p are coprime integers. The choice of the 
boundary condition, cnCq = c., reduces the Harper equation to a q x q finite matrix. Among 
its many interesting properties, the Harper equation has a very rich spectnun which was first 
depicted by Hofstadter 121 and now is well known as the Hofstadter butterfly. This equation 
has attracted extensive studies for many years (see, e.g., [3] and references therein). Apart 
from its pure mathematical interests, some important applications have been found quite 
recently in solid state physics, such as quantum Hall effect [4,5] and flux phase of high Tc 
superconductivity [6,7]. As a matter of fact, the Harper equation describes the systems of 
either Landau levels perturbed by a weak sinusoidal potential or the tight binding electrons 
subject to a weak magnetic field. 

The emphasis of this paper is on the spectral properties, in particular the total bandwidth. 
It was first observed numerically by Thouless [SI that the total bandwidth of the Harper 
equation scales like 

where C is Catalan’s constant. This scaling appears to be universal as the limiting value 
is independent of the numerators p .  However, the corrections to this scaling law depend 
strongly on the choice of p. This scaling law was later derived analytically [9-111, but the 
derivation relies on the fact that @ is small. 
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The generalization to a generic fraction was made by Last and Wilkinson 1121. It is 
based on the renormalization. analysis of the Harper equation [13,14]. For.convenience, I 
introduce an alternative representation of $e Harper equation, explicitly 

.Yo@, i )  = 2cos j + 2cos i  : (1.3) 

with the commutation relation given by 

[i, j] = iZn/3. (1.4) 

Now consider a sequence of p = p / q  which approaches the simple fraction = po/qo. 
I denote the difference by A s  = jl -BO. The spectrum for p takes the shape of the spectrum 
for which has 40 sub-bands, and the fine structure, determined by A@, can be found by 
the renormalization analysis. Wilkinson I131 pointed out that the further splitting of the Zth 
sub-band is described by the effective Hamiltonian 

( 1 . 9  HI = E1($/403i’/q0) + WAD) 

where 4 is the energy dispersion of the Zth sub-band. The commutation relation is given 
instead by 

where the effective fraction is 

Ml is the Chem,integer which can be obtained by solving the Diophantine equation [4,5] 

,406 f PO1 = I . (1.8) 

with Isll < qo/2; Ml = t~ - tl-1 and Nl =‘SI - 1-1. 
Note that if the effective fraction for the Ith sub-band is small, it is plausible that the 

analytical results,obtained by Thouless [9] are applicable to the effective Hamiltonian. This 
observation allowed Last and Wilkinson [I21 to obtain an explicit expression for the total 
bandwidth of the split Ith sub-band, which is given by (1.2) with q being replaced by q& 
and the constant being modified by the curvature of the. dispersion at its saddle points. They 
were also able to derive a sum rule for the derivative of the characteristic polynomial. The 
combination of these two results appeared to give the same scaling law as (1.2) for the entire 
spectrum of p, however, with an error of order As. This error term must vanish in order 
to agree with both numerical 18,101 and analytical results [ll]. Therefore it is necessary to 
@e into account the correction term (of order AD) ‘in the effective Hamiltonian. 

In this paper, I investigate the correction term in the effective Hamiltonian, as appearing 
in (1.5) to first order in AD. In particular, I am interested in how the total bandwidth for 
a split sub-band is affected by the inclusion of this correction term. In section 2, I show 
that the leading term in (IS), i.e. the energy dispersion, can be solved exactly in terms 
of solutions of the Harper Hamiltonian, and consequently the band structure and the total 
bandwidth can be obtained explicitly. In section 3, the effective Hamiltonian is rederived 
by using the theory of Bellissard and Rammal[15] with necessary modifications. Part of the 
correction term is obtained explicitly, and some properties of this correction are discussed. 
In section 4, the total bandwidth for a cluster of bands resulting from the splitting of a 
sub-band of Bo is calculated numerically. The results are used to extract the correction 
to the curvature of the effective Hamiltonian. Section 5 sutimarizes the numerical results 
obtained in section 4 in an analytical expression, which is further manipulated to give.a 
second sum rule. 
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2. Effect of higher orders in dispersion 

In this section, I show that the leading term of the effective Hamiltonian for a sub- 
band, described explicitly by (1.5). is exactly solvable in terms’ of solutions of $e Harper 
Hamiltonian with small fractions (i.e. p -+ 0 in (1.3) and (1.4)). As a result, the total 
bandwidth for a split sub-band of is obtained explicitly. It is further argued that the 
quadratic correction, of order 4 2 ,  to the total bandwidth of this split sub-band is absent. 

It is well known that the energy dispersion of a sub-band of A, denoted by &l(kl, kz), 
satisfies the characteristic polynomial [16]: 

P,(E) = ~(cosqokl+ cosqok2) (2.1) 

where P,(E) is a qoth-order polynomial independent of wavenumbers kl and kz. It is useful 
to define the critical energy [7,11] for each sub-band, El, which is given by the solution 
of (2.1) with its right-hand side being zero. This enables us to expand (2.1) in terms of its 
right-hahd side, and consequently write 

&(ki,kz) = EI + ~ ~ , ? [ 2 ( ~ 0 s q o k i  +coSqok2)]n. 
ri=l 

The fir& two coefficients are given by 

Therefore the leading term of effective Hamiltonian can be expressed as 

&l(i’/qO, ~ ’ / q o )  = + ay) .  COS $ + cosi:) + a:)  COS +  COS^')]^ + . . . . 

(2.4) = El +ay) .  HO + a i ) .  If: +. . . 
where HO is the Harper Hamiltonian with effective fraction pee which is small. One can 
conclude that (2.4) can be solved exactly in terms of eigenvalues of Ho, namely ej. The 
eigenvalue of &l(i’/qo. j ’ / q o )  is written explicitly as 

2. J -  - + a:) . ej + a:) . e; + . . . . ( 2 3  

Because of the quadratic term, the spectrum becomes asymmetric about the critical energy, 
except the central sub-band for odd 40, as is shown in the Hofstadter diagram. 

Now I consider the total bandwidth for a split sub-band. The main contribution comes 
from the leading term of the effective Hamiltonian, which is given by 

wi = lq - 2; I 
i 

where the superscripts + and - denote the band edges. When the full effective Hamiltonian 
is considered, there is also a contribution (of order Ap/qeE) from the correction term. Most 
spectral properties of the Harper Hamiltonian with small fractions, such as ordering of band 
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edges and corrections to the scaling, have been understood analyhl ly  due to the work 
of Thouless and Tan [lo, 14. It can be estimated by scaling arguments 191 that the linear 
term in ej gives a contribution of order q$ to the total bandwidth, while the quadratic term 

ordering of band edges does not change because of the inclusion of the second term. In 
addition, since ej is symmehic about zero, one has 

in (2.5) renders a contribution of order 4,“. Since la, (1) /al (1) I IS ’ much smaller than 1/8, the 

W, = le; - e;! + o(&). (2.7) 
j 

This indicates that the quadratic term in (2.5) does not affect the total bandwidth for this 
sub-band. This comes out of the fact that, although the bands on one side of critical energy 
are stretched while those on the other side are shrunk, they cancel out exactly with each 
other. 

The analogy of the Harper equation immediately gives 

32C Q 1 wt =-fo - 
?r qeff 

where 6’ = laf’l = I / ~ P & ( E ~ ) ~ .  The correction to (2.8) is of order q2 if pee is even, 
while if p d  is odd there are logarithmic corrections 1111. 

Altematively, Last and Wilkinson [12] started directly from (IS), which can be 
expanded in the vicinities of the saddle points in a form 

H, = &f/’ . ( 8 ’ 2  - 2‘2)/qi (2.9) 

where f/’ = (1/2)a2E[/ak$ and p = 1.2. This is because that the behaviour of the 
Hamiltonian around its saddle points tends to describe the main contribution to the total 
bandwidth. Furthermore, by use of the identity 

(2.10) 

3. Correction to the aective Hamiltonian 

In this section, I follow Bellissard and Rammal [U] to investigate the properties of correction 
term in the effective Hamiltonian. The following calculation is carried out for all the values 
of wavenumber (kl, kz), rather than the specific ones giving the band edges. This allows 
one to obtain the complete effective Hamiltonian. 

It is pointed out by Bellissard and Ramnal [I51 that the Hamiltonian for a higher 
fraction ,9 = p/q can be effectively represented by that of a lower fraction ,90 = po/qo. 
However, further quantization according to the difference between these two fractions must 
be included. Similarly I write the Hamiltonian as 

7i = H(k + Y”*K) + y H i ( k  + y ” 2 K )  + O(y2) (3.1) 

where y = Znq;2,9eff = ZXA,~+O[(A,~)~]. K1 and Kz are normalized canonical operators 
satisfying the commutation [ K i ,  Kzl = 4. If is given by (1.1). which is represented by 
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a finite go x go matrix. The correction term HI remains unlolown; however, its second 
derivative, which is the main interest of this paper, is found in the sections 'that follow. 

To project 'H into a sub-band of BO. similarly I use the Schur formula 1171 

&(E) = P E P  + P'HQ * ( E  - Q'HQ)-'. Q'HP (3.2) 

where P and Q are projection operators. Specifically the projection operator for the lth 
sub-band of H is constructed as 

P = [ [ ) ( I [  Q = 1 - P = lZ')(l'[ 
~. 1yr 

(3.3) 

where p) satisfies 

H(k1, k2)lZ) = El(kl,k2)11). (3.4) 

By the choice of projection operators, E in (3.2) is a function of K1 and K2 and therefore 
is an operator generated by Ag. Furthermore, the effective Hamiltonian is given by, 

HI = E(Ki, K z )  = (WdE)IO. (3.5) 

Equations (3.2) and (3.5) form a pair of self-consistent equations. 

3.1. Projection of H 

To calculate the effective Hamiltonian in orders of y ,  it is necessary to' expand 

where a, 
iteratively, the method has been described in detail in [15]. 

a/ak, and p = 1.2. Then the projection given by (3.2) can be applied 

The following formula: 

(zqa,Hii) = a,& .ao, + (6 - 6.) . (i'ia,z) = a,&[ .all, + (1'16 - xia,i) (3.7) 

has been used to deal with the derivatives of H. Here I omit laborious calculations and 
give the main results, which are greatly simplified compared with those of Bellissard and 
R m a l .  Up to first order in y ,  the effective Hamiltonian is given by 

(3.8) 

where 

1 
(3.9) 

Here U:) is a sort of Beny two-form, often called the Wilkinson-Rammal term 115,181, 
which has been found previously at the band edges. 

uE (0) - - J(a1w - H(WIW - (a2zizI - ~ ( w i a ~ i ) ] .  
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quantization rules for uf). The terms of order y3I2 read 
It is necessary to obtain the terms of higher orders in y. as they indicate the proper 

(3.10) 

while the terms of order y 2  are 

where the constant term is a function of k and is irrelevant to the following discussions. It 
is clear that equations (3.8), (3.10) and(3.11) can be combined and consequently written as 

4 = &(kl + yl/ 'Ki,  kz + Y ' / ~ K Z )  - y ~ $ ) ( k l  + ~ " ~ K 1 , k z  + Y ' / ~ K Z ) .  (3.12) 

This can be further expressed as 

HI = &@/qo, f / q o )  - yu$)(B/qo.  f l q o )  (3.13) 

since one can use the identities 

j = qo(k1 + Y'lZKI) 2 = qo(k2 + Y'/ZKZ). (3.14) 

Equation (3.13) recovers the result of (1.5) obtained by Wilkinson [13]. In addition 
there is a correction term. Since the correction term comes from the standard projection of 
H, it is most likely that it can be expanded in terms of the Harper Hamiltonian. 

3.2. Projection of HI 
Although the explicit expression of the correction term HI in (3.1) is unknown, it is useful 
to investigate how it behaves under the s a k  projection. Similarly I write 

H ~ ( I C + ~ ~ ~ Z K )  = ~ ~ ( l e ) + y ~ p C a ~ ~ m .  K,+~C~,~,~,(IC).K,K,+... . 
B B." 

(3.15) 

The leading-order contribution is given by y( l lHl(k) lZ) ,  which I define 

U!)(kl,kZ) = (~IHI(Wl4. (3.16) 

Similarly the quantization of this term is determined by higher-order terms, which can 
be-obtained explicitly 

Therefore equations (3.16) and (3.17) can be combined to yield an additional correction 
term to (3.13), namely 

Y o P ( b / q o ,  . f / q o ) .  (3.18) 

The second derivative of this term at saddle points is given by (5.1). It is plausible 
that (3.18) cannot be expressed in power series of the Harper Hamiltonian. This is supported 
by numerical observation. However, one expects that this term has a similar shape of 
separanix in the neighbourhood of the saddle points. The correction to the total bandwidth 
can be estimated by using its curvature at the saddle points. 
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4. Numerical resolts 
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It has been shown in section 2 that the total bandwidth for the split Zth sub-hand, Wt, is 
proportional to qz , with the coefficient rescaled by the curvature of the hispersion at the 
saddle points. In this section, I investigate numerically the effect of the correction terms, 
given by (3.13) and (3.18), on WI. 

It has beeri pointed out in section 2 that the leading term of the effective Hamiltonian 
given by the dispersion holds all the properties of the Harper Hamiltonian, as long as the 
total bandwidth is concerned. It is useful to recall the results of the Harper equation with 
small fractions. For a higher-order fraction p / q  which approaches the lower-order one 
po/qo, the correction to the scaling (1.2) contains logarithmic terms if the parity of 

40P - PO9 (4.1) 

is odd; s and the l e k n g  correction to (1.2) is proportional to q-2 if the parity is even [Ill. 
It is apparent that the corrections to WI from (3,13) and (3.18) are of order Ap/qa .  

To avoid the logarithmic corrections, I choose a sequence which converges to a simple 
fraction = po/qo in a manner 

~~ 

where no = 2.4, . . . is an even integer, and N is an odd integer which goes to infinity. The 
difference is . .  

The effective fraction is given by (1.7). explicitly 

Pono 
N + no(1 - poNd/qo 

Beff = - 

(4.3) 

(4.4) 

where (1 - poNI)/qo = MI is an integer. One should be able to check that neither the 
total bandwidth for fraction B,v nor the total bandwidth of &e split Ith sub-band contains 
logarithmic cokctions. 

Take BO = 1/3 and no = 2 as an example, there are three bands with effective 

where q s )  = q$ = N and qL2 = N + 2, respectively. 
is 

chosen, the correction from the dispersion to the scaling given by (2.8) must be of the order 
q s .  If numerically the correction term is found to be of lower order, it must come from 
the correction terms (3.13) and (3.18). To include the correction to the curvature, I express 
the total bandwidth for the split lth sub-band in a form 

The idea of this numerical calculation is that, provided that the sequence like 
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where f$ is the effective curvature. For convenience of later discussion, I adopt a slightly 
different expression, 

(4.7) 

The relation between (4.6) and (4.7) will be discussed in section 6.  Furthermore, the 
effective curvature can be written as 

The coefficient al is of principal interest, as it is related to the curvature of the effective 
Hamiltonian. The numerical value off$ is found fiom the total bandwidth, and it is further 
inserted into (4.8) to find the value of coefficient al. The results are presented in table 1, 
which are independent of the choice of no as expected. Moreover the symmetry shows that 
“(*o+l-I) =al. 

l sb le  1. Numerial results of mfficienu U!. 

P Q h Q  =I a2 r r )  ci4 

1/3 0.4534 -0.9069 - - 
U3 -0.4534 0.9069 - - 
114 0.3778 -0.3778 - - 
1/5 0.20M) 0.4128 -1.2258 - 
2/5 -0.1798 0.6678 -0.9759 - 
1/6 0.0898 0.5255 -0.6154 - 
I/7 0.0373 0.3408 0.3653 -1.4872 
?n 0.0116 0.2779 -0.9164 1.2538 
417 0.3569 -0.7901 0.1448 0.5776 
1/8 0.0148 0.1770 0.6238 -0.8156 
5/8 -0.2775 0.6749 -0.7191 0.3217 

5. Correction to curvature: s u m  d e s  

As has already been mentioned, the total bandwidth is described by the curvature of the 
effective Hamiltonian [9,12]. The curvature is obtained by taking the second derivative of 
the terms in (3.13) and (3.18). Although the explicit form of o$) is unknown, the numerical 
results strongly suggest its existence. In fact, it is found that the numerical results presented 
in table 1 can be reproduced exactly if the curvature of the effective Hamiltonian takes the 
form 

where 8’ is either a2/akt  or a’/aG, and (kl , k2) is taken a! one of the saddle points, namely 
at (0, ~ / 2 )  or (~ /2 ,0) .  The last term comes from the conhibution of y@. In the above 
expression, LTH is the well known Berry two-form defined by 

OH =i[@illazZ) - (%llaiZ)l. (5.2) 
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Its average over the unit cell gives the Chern integer [4], namely 
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The size of the Brillouin zone is given by K = 2n/qo. As mentioned in the introduction, 
NI for the Harper equation can also be obtained by (1.8). 

One can further use the identity (2.10) to write (5.1) in a form 

The total bandwidth of the split lth sub-band is then given by 

It can be shown that 

(5.5) 

This enables us to identify (5.5) with (4.7). Therefore the coefficient a1 can be expressed 
as 

ai = -nq;'sign [ ~ ' E I ]  - [(a%$) +U,, . ( a % I ) ]  . (5.7) 

Table 2 presents the results calculated by this formula. It can also be shown that 
al(1 - Po) = -ai(h). The exact agreement is found between tables 1 and 2, with the 
difference of order N-' or AB. 

Table 2. Coefficients ai calculated by equation (5.7). 

pafqa a1 e2 U3 U4 

113 0.453 449' -0.906 899b - ~~ 

2/3 ~ -0.453449 0.906899 - -~ 
114 0.377 875 -0.377 875 - - 
U5 0.200024 0.412908 -1.225865 - 
2/5 -0,180087 0,668099 -0.976024 - 
116 0.089 964 0.525 508 -0.615 472 - 
in 0.037 389 0.340 894 0.365 409 -1.487 384 
2/7 0.011 534 0.277 929 -0.916 613 1.254 300 

1/8 0.014 805 0.177 006 0.623 886 -0.815 697 
518 -0.277 882 0.674 620 -0.718 393 0.321 654 

- 

4 7  0.356 729 -0.790963 0.i4s.552 osn 363 

= cq = 4% f 12. 
b uz = -&/6. 
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There are two sum rules associated with above expression. The k s t  was derived 
explicitly by Wilkinson and Last 1121 

A 1  1 
(5.8) 

The derivation follows the exact result obtained by A w n ,  van Mouche and Simon [I91 for 
the intersection spect”. The application of this sum rule to the total bandwidth leads (4.7) 
to the scaling law (1.2). Since there is no correction of order q-2 for the total bandwidth 
of the entire spectrum of p ,  it is expected that 

PO PO 

f=1 c-1 
Cat = C s i g n [ # ~ ~ ] .  [(a%;)+u,, . ( a Z ~ I ) ]  =o. (5.9) 

Thii second sum rule has been checked to be valid for all the simple fractions. 
Due to the inclusion of the correction terms U$) and U$), the positions of band edges 

and the critical energy will be shifted by an order of y .  The numerical observation on the 
shift of the band edges proves that the correction term yu!f is correct [15,18]. It also 
shows that U$) must be zero at tbe band edges. If the effective Hamiltonian is completely 
Harper-like, i.e. it can be expanded in owers of Harper Hamiltonian, the shift of the c r i t id  
energy is given by the value of y(u$ + U $ ) )  for (klrk2) being ( O , K / ~ ) ,  independent of 
the choice. of the sequence of PN in (4.2). But the numerical calculation shows that it 
depends strongly on ,¶N (more specifically on no). This agrees with the fact that U!) is 
non-Harper-like, as strongly suggested by the curvature of U$) given by (5.1). 

6. Conclusions and diseussiou 

This paper studies the effective Hamiltonian of the Harper equation in the total bandwidth 
point of view. The renormalization analysis of the Harper equation has shown that the 
spectrum of a higher-order fraction of @ can be obtained by that of a lower-order fraction 
Po with its further splitting described by the effective Hamiltonian. The total bandwidth 
for each split sub-band of has been found to be given by the Thouless scaliig law 
modified by the curvature of the effective Hamiltonian. In this paper, the leading term in 
the effective Hamiltonian which is given by the dispersion is proved to be exactly solvable. 
Some properties of the correction terms in the effective Hamiltonian ae  also discussed. The 
main result of this paper is the correction to the curvature, which is obtained numerically, 
and its explicit analytical expression is also found. This yields a second sum rule in addition 
to the one obtained by Wilkinson and Last. The results for the curvature are essential to 
prove the Thouless scaling law of the total bandwidth for a generic fraction. 
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